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A method is described for calculating SCF wavefunctions for excited electronic 
states of atoms and molecules. The orthogonality conditions with the ground 
state wavefunction and the underlying excited states wavefunctions are 
introduced in the SCF process in a simplified form. 
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1. Introduction 

Among the various known methods for the determination of the wavefunctions 
of the excited states of atoms and molecules [1-12], the generalization of the 
Hartree-Fock method (lowest number of determinants which shall assure a right 
spatial symmetry and spectral multiplicity) seems to be more advantageous for 
the following reasons: 1) the wavefunction is more easily interpretable; 2) the 
molecular orbitals can be determined by the solution of a monoelectronic problem 
in an effective field. It is, moreover, reasonable to think that these molecular 
orbitals provide an electronic charge density, which does not undergo modifications 
when the short range electronic correlation is introduced. Hence, a better deter- 
mination of energy can be made for the second time by the introduction of the 
electronic correlation as a functional of the charge density. 

Many authors have suggested iterative processes based on suitable coupling 
operators [ 13-26]. Although these methods are correct in principle, they generally 
involve great difficulties in attaining convergency. This handicap can be overcome 
by employing the method recently proposed by us [27], based on a number of 
diagonalizations of matrices representative of different operators at every iteration. 
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Besides the difficulties related to the solution of  open-shell problems, another 
obstacle is to impose the orthogonality constraints with the wavefunctions of 
the underlying states. The aim of the present paper is to present a method which 
resolves this difficulty. We shall develop the formulae for a series of electronic 
levels corresponding to monoexcited singlet and triplet states. The generalization 
to other similar cases (e.g. states corresponding to double excitations on the 
same symmetry of  the ground one) is evident. 

Let ~bl, q5 2 . .. ~bm... ~b, be n molecular orbitals, built up as linear combinations 
of n basis functions a t . . .  a,: ~b =aC, with C t S C =  1, S being the overlap matrix 
of a. Let us assume that the ground state of a system of 2m electrons is a closed 
shell, described by the ~bl.. .  ~b,, orbitals, and consider the promotion of one 
electron from the highest occupied orbital ~b~ to the first virtual orbital ~b,,+ 1 
(~b m and ~b,,+ 1 belong to monodimensional irreducible representations). The open 
shell thus obtained can be described by a combination of two detors, D1 and D2, 
which correspond to the two configurations [core] (~mO~m + l fl and [core] (amfl(~ ~ + 1~. 
(D~+D2) and (D1-D2)  combinations represent the triplet and singlet states 
respectively. This is a very poor approximation, as the true orbital q~'+ a of the 
excited state is quite different from the first virtual orbital ~b m + t of the closed shell. 
Moreover, because of changes in the charge density, the first m orbitals will also 
undergo some variations. The wavefunction of this excited state will be built 
up by ~b'l... ~b', ~b'+l orbitals, which are different from the previous ones. The 
open shell orbitals can be related to the closed shell ones by the relationship 
dp'= 4J U(U is a rectangular n x m + 1 matrix), or to the basis functions by 4 ' =  aC'.  

In order to determine the new orbitals 4~', it is necessary to take into account the 
orthogonality constraint of the excited state wavefunction with that of the ground 
state. The triplet state wavefunction always satisfies this constraint automatically, 
while the singlet state one satisfies it only if ~b m and qS,,+ t belong to different 
irreducible representations. Otherwise, the determinant of  the overlaps between 
q51...~b m and q~'l...~b" orbitals or between q51 . ..q5 m and ~b~...~b'_l,  qS~,+l 
orbitals must be zeroJ The first condition has no physical significance, therefore 
we impose the condition for vanishing the second determinant. We shall fulfil this 
condition by reducing the variation field of the orbital which describes the excited 
level. Although it is not a general procedure, it seems highly preferable to us 
as it can be easily executed and does not cause any significant worsening of the 
value of the energy and of the form of  the orbital. 

2. First Excited Singlet State 

Let q5~')... ~b~ ) be the molecular orbitals of r'th iteration; the first m -  1 are doubly 
occupied, ~b m and ~bm+ 1 are singly occupied, ~b~+ 2 . - .  ~b, are functions orthogonal 

1 In a rigorous form, the orthogonality constraint must be imposed with the exact wavefunction 
of the ground state. We limit ourselves to the approximate condition of the orthogonality with the 
single detor ground state wavefunction. This approximation will be applied to the successive excited 
states also. 
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to the preceding ones. q~o)... ~b(o) are the ground state MO's (occupied and 
virtual). Let C (~ be the matrix of the coefficients of the 4r ~ orbitals: q7 r) = aC (~). 
Following the formulae of Ref. [27], one can build up the matrices d, a, b relative 
to the operators ~a,  ~a,  ~b employing q~(') orbitals. In order to get the new iteration 
4r 1) MO's, the following steps must be executed: 

a) Doubly occupied orbitals - virtual orbitals combinations. 
A rectangular matrix C is obtained from C (~) by drawing the columns of the 
doubly occupied and virtual orbitals and by it the transformation CtdC is 
performed. If U diagonalizes this last matrix, the rectangular matrix C1 = CU 
is calculated and then it is substituted for the previously removed columns 
of C ('). 

b) First singly occupied orbital - virtual orbitals combinations. 
A rectangular matrix C is obtained from the new matrix C (') by drawing the 
columns of the first singly occupied orbital and of the virtual orbitals, and by 
it the transformation C~aC is performed. If U diagonalizes this last matrix, 
the rectangular matrix C 1 = CU is calculated and then it is substituted for the 
previously taken off columns of C (~ 

c) Doubly occupied orbitals - first singly occupied orbital combinations. 
A rectangular matrix C is obtained from C (') by drawing the columns of the 
doubly occupied orbitals and of the first singly occupied orbital, and by it 
the transformation C* ( d -  a)C is performed. If  U diagonalizes this last matrix, 
the rectangular matrix C 1 = CU is calculated and then it is substituted for the 
previously removed columns of C (r). 

d) Orthogonalization of the virtual orbitals to the doubly occupied ones of the 
ground state. 
Let C be the matrix obtained by removing from C (~ the columns of the two 
singly occupied orbitals, and C' the matrix of the first m columns of C (~ The 
rectangular (m x n - 2 )  matrix T=C'*SC is constructed. From this, n - m - 1  
square matrices are obtained by putting together the first m -  1 columns and 
the k ' th  column, where k=m,  m + l . . . n - 2 .  Their determinants are A1, 
A2 . . .  A,_,,_ ~ (we observe that the calculation of these determinants can be 
very easily performed once the Gauss elimination method is applied). The two 
columns m and m + 1 of C are then substituted in the following way: 

C.m*-C.m cos O+Cm+l sin 0 

C.m+l~--C., . sin O+C.m+l cos O, 

where tg 0= - A  1/A2. The A 1 and A 2 determinants become: 

A'~ =0  

A ~ = - A  1 sin O+A z cos 0 

The same combination can be made between the m + 1 column just modified 
and the m + 2 ,  with tg 0=  -A'z/A 3 and so on until A~_m_2=0.  The resulting 
C matrix is substituted for the previously removed columns of C (o. 



260 R. Colle et al. 

e) Second singly occupied orbital- virtual orbitals combinations. 
A rectangular matrix C is obtained from C tr) by drawing the columns of the 
second singly occupied orbital and all the virtual orbitals, except the last, and by 
it the transformation C b C  is performed. If U diagonalizes this last matrix, 
the rectangular matrix C~ = C U  is calculated and then it is substituted for the 
previously removed columns of C tr). The new matrix C ~r+ 1) thus obtained shall 
be employed in the next iteration. We remark that combination between the 
two singly occupied orbitals and those between the second singly occupied 
orbital and the doubly occupied orbitals cannot be performed without violating 
the orthogonality condition in our simplified form. 

3. Second and Following Excited Singlet States 

Let @1, @2" "'@m, @re+l, @m+2"" "@n be the orbitals resulting from the SCF 
iterative process to build up the wavefunctions of the first excited singlet state. 
So one can start from them to build up the wavefunction of the second excited 
singlet state, considering the singly occupied orbitals as @m and @re+z" As an 
electron moves from a @,,+1 orbital to a @m+2 one, the inner @1.- �9 @m orbitals 
undergo some changes. If they are frozen, then @m+2 should lie completely in the 
space orthogonal to @,,+1- It is reasonable to assume that the variations of 
@1... @,, are small, since the more relevant variations of the charge density take 
place in an external region where they are not significant. So we regard it a very 
good approximation to exclude the @m+ 1 orbital from the space spanned by the 
remaining n -  1 orbitals. This approximation certainly does not bring any notice- 
able errors on the energy and the wavefunction, and allows a very remarkable 
simplification of the SCF process to obtain the new orbitals. The exclusion of the 
@m+l orbital indeed assures that the new state is orthogonal to the underlying 
excited one. So the SCF process is the same as that previously described. 

The calculation of the third and the following excited states is carried out in a 
similar way, starting every time from the orbitals obtained for the preceding state 
and excluding the last singly occupied orbital. The reduction of the space di- 
mension leads to a progressive worsening of the calculated wavefunction. Never- 
theless, we observe that this worsening is not very important if the basis set tr is 
adequate to describe the various orbitals. 

4. Excited Triplet States 

The first excited triplet state does not offer any difficulty as regards the orthog- 
onality with the ground state wavefunction. So our recently proposed method of 
calculation for open shells can be followed throughout. Regarding the upper 
triplet states, one can follow the same procedure, starting from the orbitals of 
the previous triplet state and excluding the last singly occupied orbital from the 
SCF process. 
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